About 3,180 results
Open links in new tab
  1. Intro to Autoencoders - TensorFlow Core

    Aug 16, 2024 · This tutorial introduces autoencoders with three examples: the basics, image denoising, and anomaly detection. An autoencoder is a special type of neural network that is trained to copy its …

  2. Convolutional Variational Autoencoder | TensorFlow Core

    Aug 16, 2024 · This notebook demonstrates how to train a Variational Autoencoder (VAE) (1, 2) on the MNIST dataset. A VAE is a probabilistic take on the autoencoder, a model which takes high …

  3. Autoencoder 소개 - TensorFlow Core

    이 튜토리얼에서는 3가지 예 (기본 사항, 이미지 노이즈 제거 및 이상 감지)를 통해 autoencoder를 소개합니다. autoencoder는 입력을 출력에 복사하도록 훈련된 특수한 유형의 신경망입니다.

  4. オートエンコーダの基礎 | TensorFlow Core

    autoencoder.compile(optimizer='adam', loss=losses.MeanSquaredError()) 入力とターゲットの両方として x_train を使用してモデルをトレーニングします。 encoder は、データセットを 784 次元から潜 …

  5. TFP Probabilistic Layers: Variational Auto Encoder - TensorFlow

    Feb 22, 2024 · In this example we show how to fit a Variational Autoencoder using TFP's "probabilistic layers." Dependencies & Prerequisites Import Toggle code

  6. The Functional API | TensorFlow Core

    Apr 12, 2024 · In the example below, you use the same stack of layers to instantiate two models: an encoder model that turns image inputs into 16-dimensional vectors, and an end-to-end autoencoder …

  7. 畳み込み変分オートエンコーダ | TensorFlow Core

    # Pick a sample of the test set for generating output images assert batch_size >= num_examples_to_generate for test_batch in test_dataset.take(1): test_sample = …

  8. Variational Autoencoders with Tensorflow Probability Layers

    Mar 8, 2019 · In this blog post, we demonstrated how to combine deep learning with probabilistic programming: we built a variational autoencoder that used TFP Layers to pass the output of a Keras …

  9. 컨볼루셔널 변이형 오토인코더 | TensorFlow Core

    이 노트북은 MNIST 데이터세트에서 변이형 오토인코더 (VAE, Variational Autoencoder)를 훈련하는 방법을 보여줍니다 (1 , 2). VAE는 오토인코더의 확률론적 형태로, 높은 차원의 입력 데이터를 더 작은 …

  10. 自编码器简介 | TensorFlow Core

    autoencoder.compile(optimizer='adam', loss=losses.MeanSquaredError()) 使用 x_train 作为输入和目标来训练模型。 encoder 会学习将数据集从 784 个维度压缩到隐空间,而 decoder 将学习重构原始图 …